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The h-p Version of the Boundary Element Method with Geometric Mesh on Polygonal Domains
I. Babufkal, B. Q. Guo? and E. P. Stephan?

Sumimary

This paper applies the techniques of the h-p version to the boundary element method fur
boundary value problems on plane non-smooth domains with piecewisely analytic boundary and data.
The exponential rate cf convergence of the boundary element Galerkin solution is obtained when a

geometric mesh refinement is used near the vertices.

1. Introduction

The h, p and h-p versions (on a quasiuniform mesh) of the boundary element Galerkin method
for integral equations on polygons has been studied in various papers, e.g., in [1. 2. 3. 4]. In all
versions the algebraic rate of convergence of the Galerkin solution is restricted by the vertex
singularities of the solution of the integral equations although it could be very smooth away from the
corners. Based upon a regularity analysis (ir countable normed spaces) for the solution of the integral
equation we show in [5] that an exponential rate of convergence with respect to the number of degrees
of freedom can be achieved for the h-p version by simultaneously reducing the mesh size and increasing
the polynomial desrees of the boundary elements if a geometric mesh refinement towards the vertices is

used. Here we report the main results from [5].

Let Q@ C 27 be a bounded polygonal domain with vertices A;, 1 < i < M. the boundary 9% be

a piecewise analvtic curve
M _
M=r=yr,;
i=1

where I'; is an open line segment connecting A, and A,,, (AM-H = A,). By w, we denote the interior

angle at A;.

Let H¥(Q), k > 0 integer, denote the usual Sobolev spaces furnished with the norm
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where a = (a,.a;). a, > 0 integer. |a| = a, + a, and D%u = —a—ua—. The space H Iy s
A%, '0x, 2

defined as the restriction of functions in H*(). i.e..

HV4(0) = {ulp.ou €eBEQ)), fork > 4,

E-1/°

1

H () = L*T), fork =4,

- k=-1/2)

Hk—l/'—’(r) = (H (F))’ (dual spacesj, for k <

[

For the investigation of singularities at corners we introduce weighted Sobolev spaces and countable

normed spaces on the houpdary T Tre T - (355 and foi & € (ab), Iy — (A—a), iy = ja—uj.

P, (x) =[] ij'“:.(x), 3 = (3.,3,). 0 < 3,3, < 1, k integer. Now we define for k > € > (. and
=1

integer € > 0:

H;é(l) ={ue He_l(l) if€ > 0: !E‘i>5+m_e(x)u(m)(x)|| < oo, for € <m <k}

L*(1)

Bg(l) = {ue H‘;-é(n, Vi> e e, u )l < Cdt-fk—e).C > 1,d > 1 independent of k}.

B+k-¢

k€ . ..
Forany I', C T, H; (I,) and Bg’(l“) are defined correspondingly with 3, = (3, ,,5,,). Bg([’) =
M . . . ; N . -
I B?‘(I“) with £ = (81,22....1“). 3 = (;’31,.,.,3“). We shall write 3, > 3, (resp. 3 > 3) if
i=1 5 ) )
: . . €841
,,28,,.] =12 (resp. #, > 3,, 1 <i < M). By By * (I') we denote for 1 < i < M the space

4 €41
[T Ba(T)x [I Bz (T
0<8,<} 3<B,<1
ke - : : : ,

Remark 1.1. Hz (I') ai.’ T (T') are the trace spaces of functions belonging to the weigiiicd Sobolevw  “OF

Y Y ] 7
space Hg (2) and the couniable normed space Bg (), respectively (see [6, 7, 8]) o

in the next sections we analyze the regularity of the solution of integral equations for Neumann a

€841
and Dirichlet boundary value problems in terms of countable normed spaces Bz  (T'), design the EE—

geometric mesh and the distribution of the degrees of polynomials in the boundary element Galerkin -

a/
method, which lead to the exponential rate of convergence with respect to the number of degree of ‘6;———-
'y Codes
g \\ . .n"'lll and/or
1&% \. :Dlst. } Speoial
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freedom. For the proof of the theorems we refer to [5].

2. The Neumann Boundary Value Problem

We ccnsider the Neumann problem on a polygonal domain Q

where % means the normal derivative with respect to the outer unit normal. and g satisfies
n

{‘gds:(] (2.

18
o

Let D and K’ be the integral operators for x € T

Du(x) = —% g ) i (anx——yl)u(y)ds(y\)

0[1:: ﬁny
and )
Ju(y
K/ Qo) = 4 2 1 enltx—yt G ast

Then the first kind integral equation for the Neumann boundary value problem (2.1) reads as
Du=fonT (2.3)
with f = (1—K')g, see [1].

0.1
Theorem 2.1. [3] For given g € B (T') satisfying (2.2), the integral equation (2.3) together with the
12 N - N
side condition [ uds = 0 has a unigue solution u € Bj (T), for some 8,0 < B < 1 wkere f depends

. r
on 3 as well as on the geomelry.

Now we discuss the numerical solution of (2.3) by the h-p version of the boundary element

Galerkin method with a geometric mesh.

Let © be a L-shape domain shown in Fig. 2.1. We assume for simplicity that the solution u of

. 8 . B . .
(2.3) belongs to B5(T) (resp. B3(I')) with &, =l 12 ¢, = “,g < BiaBy, < 1 (vesp. flS <

51’2,32,1 < %) and éﬁ- = 1for3 <j < 6,i. , the singularity occurs only at the origin. For example
j




/3

this is the case of u = cos £ @ (resp. u = r sin g) on I' where (r,8) denote the polar

LRIt

courdinates centered at the origin (see [9, 10]).

Let o € (0.1) be the mesh factor and n, integer, be the number of layers, and let T ,lgig

I(j). 1+ £ 3 € n+1 be the Luuiudary intervals such that dist(O,I’w) = o™t

dist(0.T,,) = 0,1 <i < I(j). Then I', = {T

.l <j < n+l and
w0 1 €1 <IG), 1 € < n+1} is called the geometric
mesh ou T ascocizted with o and n. Fig. 2.2 shows a sequence of the geoemtric meshes with ¢ = 0.15.

Let P = {p, ;. 1 <1 <11 <j < n+1} be the degree vector with P., > | integer. The

boundary element space associated with the geometric mesh I, and degree vector P is defined by
SP(I‘:1 = {ole|p is a polynomial of degree < p, ;}
iy

and

$P(ryy = sy n co(ry ¢ V(1)

The boundary element Galerkin procedure for the integral equation (2.3) with given

01 D n :
g€ B3 (I isto find u, € SP(I’U) satisfving [ upds = 0 such that
r
(Dupw) = ((1-Kgw), ¥ w € $P(r7) (2.4)

where (-,-) denotes the duality between H-1/2(F) and Hl/z(l‘). We lLiave the following approximation

result of the h-p version of the boundary element Galerkin method.

Theorem 2.2. [5] Letu € BE(I‘) (resp. Bg([’)) be the solution of the integral equation (2.3) and T be
the boundary of the L-shaped domain shown in Fig. 2.1, [.3,’1- = 61,1 = [32'2 =0,3<1<6,j =12

?; < 1‘3‘.2,[32', < 1, (resp. (1-5 < Bwﬁu < %) and F:, o € (0,1) be the geometric mesh on T'. Lel
QP(I‘:) denote the boundary element space defined above with Py =pP; 2 Ljp<p;<vn0<p<

()

v < oo. Then the boundary element Galerkin solution: € SP(F:) of (2.4) converges to u in H'/?

erponentially, i.e.,

1/2
< Ce—bN
()

”U"Up”Hx/z

where N is the number of degrees of freedom, C and b are some constanis independent of N.

B i R R R T Coeme e




3. The Dirichlet Boundary Value Problem

In this section we consider the Dirichlet boundary value problem

Au=0inQ
Ul}'*:g

With the integral operators

cOu,y _ 1 g 0uly) _

V an(x) = —z %: 7n, €nlx—y|ds(y), x € Q
and

Ku(x) = —- 71—,. | ﬁi {tnlx—y{}u(y)ds(y), x € Q
[ ony
{3.1) leads, as shown in {2]. to the first kind of integral equation
A4 g\; =9 (3.2)

with f = {1+ K)g, for which there holds the following result

Theorem 3.1.

[5] Let cap(T') # 1 where cap(T) is the analytic capacity of T. Then for given
1.2
g € By (T) N COT) there erists ezactly one solution 9u

0t . .
33 € R; (T) of (3.2) with come 3,0 < 3 < L.
Now we consider the Galerkin solution of (3.2) obtained by the h-p version. For simplicity we

assume again that € is the L-shaped domain shown in Fig. 2.1 and the solution g__u of (3.2) has a

n
singularity at the origin only. Then the geometric mesh T, on T and the boundary element space

SP(F:) are defined as in the previous section. Obviously, SP(F:) c LYI) C g2

(T).
The Galerkin procedure for the integral equation (3.2) is to seek ¥, € SP(I‘:) such that for all
wp € SP(T7)

(Voriop) = (1+K)g.65)

For boundary element solutions ¥, we have the following approximation theorem.

Theorem 3.2. [5] Let % € B}g(l") (resp. B%(I‘)) be the solution of the integral equation (3.2) and T 1s

the boundary of the L-shaped domain shown in Fig. 2.1, with cap(T) # 1, and B” = B,, = B-’.i for

3 <1 <6,5 =12 g < [‘?1,2,32'1 < 1, (resp. fl-i < [‘31,2,[-?2'1 < %) and let Ty, o € (0,1) be the

{3.1)




geometric mesh on T and SP(I‘:) be the boundary element space defined above with p, ; =p, 20

)
i <p, <vn 0 < u < v < x. Then the boundary element Galerkin solution vp € SP(F:) of (3.3}

converges to g—g mn H_l/ﬁ(l') exponentially, 1e.,
) L/
e — Q8 < CeTBN
I Onv H—l/.(r) -—

where N 1s the number of degrees of freedom, C and b are some constants independent of N.

4. Conclusion

The regularity results for the solutions of the integral equations for the Dirichlet and Neumann
boundary value problems of the Laplacian can be generalized to bipotential and elasticity problems
with essential, natural, and mixed boundary conditions. The h-p version of the bourdary element
method possesses advantages over the finite element method such as reducing the number of degree of
freedom and avoiding the difficulties in the treatment of non-homogeneous essential boundary
conditions in the finite element method (see [10]). Although the geometric mesh show~ in Fig. 2.1 is
designed for the problems with singularity at one corner it can be géneralized without any difficulty to
the case that the singularity occurs at several corners of I', and thie exponential rate of convergence can

be proven as well. All theorems above will hold if Q is a curvilinear polygon.
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Figure 2.2. Geometric Mesh I'y, n = 1.2,3, ¢ = 0.15.
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